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On the Derivation of the Generalized Langevin 
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The main result of this paper is a derivation of a generalized nonlinear Langevin 
equation (GLE) for n interacting particles in a bath. A consequence of the 
derivation is that the exact form of the (generalized) fluctuation-dissipation 
theorem is obtained. We discuss also the relation between the memory kernel of 
the GLE and some corresponding correlation functions which can be easily 
obtained in a molecular dynamics computer experiment. In the same spirit it is 
shown that the approach applies to a Brownian particle subjected to a stationary 
external field. The technique presented in a previous paper to simulate general, 
ized Brownian dynamics can be easily extended to the present case. Our 
derivation intends to clarify the uses and (possibly) abuses of the Langevin 
equation in Brownian dynamics studies. 

KEY WORDS: Generalized Brownian motion of n particles; Mori projection 
technique; fluctuation-dissipation theorem; generalized Brownian dynam- 
ics computer experiments. 

1. iNTRODUCTION 

The computer simulation of Brownian motion, named Brownian dynamics 
(BD) by Turq et al.,(l~ has recently received great attention on the ground 
that it permits the study of the time evolution of a set of relevant variables 
providing a (simpler) stochastic description of the "heat bath" formed by 
all other degrees of freedom. A certain number of BD simulations have 
appeared in the literature to tackle, within this general philosophy, a large 
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variety of physical problems. (~-81 Quite recently (9'1~ it has been conclu- 
sively shown that also the Brownian motion corresponding to a wide class 
of GLE, i.e., a Brownian motion with memory effects, can be integrated. 
Let us call it generalized Brownian dynamics (GBD) including BD as a 
special case. 

The most interesting applications of GBD require a model where the 
Brownian particles interact via a given potential a n d / o r  are subjected to an 
external stationary field. A typical example is provided by a set of n 
particles in solution. The corresponding stochastic equations of motion are 
usually written as (~1) 

dp,,  
fat dT Z Yi.,j~( t - "r)pj,~('r) + Ri . (  t ) 

dt u j,~ 

ext  + ~ jF~  ([rj(t) - r~(t)[) + F~ (r~(t)), i , j  -- 1,n ; a , /3  = 1,3 

(1.1) 

where ~%,]B(t) are the memory functions, R~(t) is the so-called "random 
force" acting on the ith particle, F~J(Ir j - r i l  ) is the force on Brownian 
particle i due to the j th  one, and faeXt(ri(t)) is an external field. However, 
here is an important deficiency in this philosophy. In fact, the original 
derivation by Mori (12) of the GLE does not contain the more general case 
(1.1) and, to our knowledge, no attempt has been made to fill this gap on a 
statistical mechanics basis. Any proof of (1.1) is still lacking. In a different 
context a family of strict Langevin equations for interacting Brownian 
particles has been obtained. (~3-~s) However, these derivations are not useful 
here because they do not apply when memory effects are present. More- 
over, the form of the fluctuation dissipation theorem in this case is far from 
clear. The aim of this work is not to exploit once more Eq, (1.1), but to 
give, following the Mori approach, an exact derivation of it. In doing so we 
will also obtain the relation between the kernel ~, and the autocorrelation of 
the random force. = 

The structure of this work is as follows. In Section 2 we recall the main 
results of the Mori derivation and we apply it to a suitable (vectorial) 
dynamical variable which permits us to separate the effect of the medium 
from the interactions to be treated expncitly. The Mori GLE can then be 
transformed easily into Eq. (1.1) if a part of the convolution term is 
transferred into the random force term; in this way the analog of the 
second fluctuation-dissipation theorem is shown to be much more complex 
than it has been usually assumed. 

In Section 3, we give the physical meaning of the memory kernel and 
we comment on the possibility of substituting bare interactions with sol- 
vent-mediated effective ones. 
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In Section 4 we give the essential steps needed to realize the computer 
simulation of this type of generalized Brownian motion. 

In Section 5 we come to some conclusions, we comment  on the 
limitations of Eq. (1.1), and we draw attention to the fact that to really 
exploit this approach some physical extension of our derivation is needed 
so as to exclude from the random part the effect of the Brownian particles' 
configurations and to maintain some clear physical meaning to the memory  
kernel. 

2. THE DERIVATION OF EQUATION (1.1) 

Our starting point is the central result of the Mori paper  on Brownian 
motion. (12a) Let us restate it. 

Given a Hamiltonian system of N particles and a set of dynamical 
variables {Xi}i=l,3n associated with it such that the X i (i) are stationary 
stochastic variables with zero average and (ii) have the same time-reversal 
parity, the time evolution of the vectorial process X~(t) can be described by 
a vectorial G L E  of the form 

= - r,j(t - ~')Xj(~-)&-+ Ri(t), i =  1, 3n (2.1) 

with (denoting with X r and F T the transposed vector or matrix, respec- 
tively) 

R(0) = J~(0) (2.2a) 

( R ( t ) )  = O (2.2b) 

(__R(t) P.T(C)) = r ( t  - c ) ( x x  T) 1 (2.2c) 

( R ( t )  XT(0)) = 0 (2.2d) 

(__R(t + t') Xr ( t ' ) )  = f0"d~(p.(t + C)RT(C - s))(XXT) - ' (xxT(~))  

(2.2e) 
The derivation of Eq. (2.1) and properties (2.2) have been reviewed so 
many  times (see, for example, Ref. 11) that we will not insist on it. Note, 
however, that properties (2.2) are valid by construction. In particular (2.2c) 
means that R and X are not stationarily correlated. 

In order to illustrate our derivation in a definite way, let us consider 
the case of a set A of n particles in a bath B of (N - n) solvent particles in 
the presence of an external stationary field. The Hamiltonian of this system 
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can be written 

u ;7 
S (  { ri' pi}'= 1~) = E i  2mi~ i q- WAA( (Ti} i= ~,n) 

1 

-[- WBB ( ( rj} j=n~TYN) -[" WAB( ( Fi} i= ~,N) 

+ qbA({r/}i=Z; ) + cb,({ r , } , = ~ )  (2.3) 

The equations of motion for the subset A are 

mi):ia = ,  () (WA,,I.-I-OA) -- ~ ~--~/, (WAB), i =  1 , n , a =  1,3 (2.4) 
ari,~ 

On the right-hand side of (2.4) the first term represents the mutual interac- 
tions of the A particles together with their coupling with the external field, 
while the last term gives their interactions with the solvent. 

The essential simplification of the Langevin-type description of (2.4) 
consists in substituting the last term by a suitable stochastic description: 
this is precisely the sPirit of Eq. (1.1). 

The Mori technique can be applied choosing as the set of dynamical 
variables the column vector 

with 

(X),,o=[p_- f'_Jt'g(c)],,~ 
= Pi,~(t) _ :t_ dt' Fi,~(t' ), i =  1, n , a =  1,3 (2.5) 

,~ = ~r,,oa (WAA + ~A) = E.. F2(Ir/ - r,[) + F~X'(r,) 

(2.5) can also be written 

X (  t) = p( t) - ( i L ) -  : F (  t) (2.5a) 

where iL = { H , . . .  } is the Liouville operator of the n particle system. The 
set of dynamical variables (2.5) satisfies the requirements (i) and (ii). 
Therefore, they satisfy Eq. (2.1), which can be written 

p_(t) - F ( t )  = - s  F ( t  - t ')[p_(+)(t') - ( i L ) - ' F ( t ' ) ]  + R__(t) (2.6) 

where R(t), the random force associated with the set (2.5), satisfies proper- 
ties (2.2). Note that in (2.2c), the normalization matrix is not (ppr} but 
([p_ - ( iL )-1F)(p_ - ( iL ) -1F)T) .  

Defining a new random force R'(t) as 

= _n(t) + .o('ar r ( t  - c) (" dc'._ v_(c') (2.7) _R'(t) 
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Equation (2.6) becomes 

= - footdt ' F( t  - t ')p(t ') + R ' ( t )  + F ( t )  (2.8) p(t) 

which looks formally identical to (1.1). 
However, some of the most characteristic properties of a random force 

are lost; in particular, (2.2a) and (2.2b) are still valid, while (2.2c) and 
(2.2d) become, respectively, 

(R__'(t) R'T(0)) = ~ ( t ) ( X X r )  -1 

where 

and 

+ fotdt ' F ( t -  t')ft'oJt"(F(t")F_F_F_Frs(O)) (2.9) 

0 - 

(R'(t)_pT(0)) = (_li(t)_pT(0)) -- (F(t)p_r(o)) 

+ fotdt ' F(t - t')(p_(t')p__r(O)) (2.10) 

Equations (2.8) and (2.9) are the main results of this section. They show 
that while Eq. (1.1) can be obtained by an exact statistical mechanics 
derivation, the random force and the memory kernel so introduced do not 
satisfy the usual fluctuation-dissipation theorem but the more complicated 
relation (2.9). Moreover, the random force R'(t)  is not orthogonal to _p(0). 

We now turn our attention to the physical exploitation of this GLE; 
we will see in the next sections that the form (2.6) of the GLE gives a much 
better starting point to the physical interpretation and to the GBD numeri- 
cal implementation. 

3. PHYSICAL INTERPRETATION 

The time derivative of the chosen set of dynamical variables (2.5), 
i i ( t ) -F ( t ) ,  represents nothing else than the solute-solvent force _FAs(t). 
This means that 

X(t)  = ( iL)- lF,~s( t )  = 5  dt' F._FAB(I' ) (3.1) 
o o  

Therefore, 

C(t)  ~ ( X ( t )  xr (o)~  = - : ° ° d t ' ~ d t " ( F A s ( t " )  F ATS(0)} (3.2) 
l t '  - -  
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By using the standard procedure of derivation of the first fluctuation- 
dissipation theorem, (12a) we obtain 

~(z)  = [z + 2 ( z ) ] -  'C(0) (3.3) 

where ~(z) and ~(z) are the usual Laplace transforms of the C(t) and r(t)  
matrices. 

Equations (3.2) and (3.3) taken together provide the natural link 
between the memory kernel I" and the autocorrelation function of the 
solvent-solute force, which is a well-defined observable quantity. Therefore 
from the analysis of the hydrodynamical interactions for a given system 
(e.g., by molecular dynamics simulation) it is possible to arrive at a definite 
model for F. 

Until now by mutual interaction between Brownian particles we have 
always meant bare interaction. However, in some work (1'4) of an applica- 
tive character the energy WAA has been replaced by an effective interaction 
potential, usually obtained on a phenomenological basis. 

The necessity of such a generalization has been quite clearly explained 
in a paper by Chandler and Pratt (16) and recommended by Adelman. (9) 
However, in Ref. 16 the aim was not to derive the corresponding GLE: 
some argument is given only for the choice of the effective potential. In the 
context of our derivation, given the weft it is quite easy to derive on a 

" "  A A '  

statistical mechanics basis the corresponding GLE. In fact, it is sufficient to 
choose as dynamical variable to be projected the new set of (X'} given by 

x ' ( , )  = _p(t) - f'f,' F ~  ') (3.4) 

where 

F o " =  _ • t 
- -  D r  

Then the previous argument provides a GLE formally identical to (2.6) but 
with F substituted by F eel. However, the physical interpretation of the 
kernel 17' corresponding to this new case is more obscure because it is tied 
to the autocorrelation function of (li - F  eel) which, because of the phenome- 
nological character of F__ eft, is a mu~h less evident dynamical variable. 

4. NUMERICAL IMPLEMENTATION 

The next problem is to perform the GBD for the GLE (2.6). This 
consists in computing numerically the trajectory in the reduced phase space 
of the n Brownian particles according to the system 

M_~ = p with M,j = mi~ij 
- ( 4 . 1 )  

i i = A l ( t )  + F__(r) 
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where Al(t) defined by comparison with (2.6) is one of a set of (vectorial) 
auxiliary variables to be defined later. The stochastic character of (4.1) is 
given through A~(t), which plays the role of a known time-dependent 
external force. Therefore the integration of (4.1) reduces to (i) the genera- 
tion of A 1(0 and (ii) the computation of r(t), p(t) by any suitable algorithm. 
As (ii) constitutes a standard matter, let us concentrate on (i). 

To our knowledge (9'~~ the generation of A 1(0 can be realized under 
two restrictive conditions: (i) The random force process is taken to be 
Gaussian, and (ii) the Mori continued fraction expansion (12b~ of F can be 
approximated in a satisfactory way by a truncated one. The technique is 
quite simple and has been described elsewhere for the scalar case. (~~ Here 
we present its extension to the general vectorial case. The essential steps go 
as follows. 

It is well known (~2b~ that the random force in (2.6) generates a family 
of random forces {Rx}x=lZ ~ satisfying a usual GLE, 

R_~_,x(t) = -~ootdt ' r X + l ( / -  t ')R~(t') -k- R h + l ( / )  (4.2) 

where 

Rl(t)--= _R(t) and __F,(t)=__F(t). 

The family of kernels _F_x(t ) satisfies the set of equations 

]~x(t) = -- fotdt' Fx+ l ( t  - t')T'x(t') (4.3) 

Let us now introduce (1~ the set of auxiliary variables {,A,x}x=0U~ 

Ax(t)  = - foo'dt' ]?x(t - t ' )Ax_ , ( t ' )  + R x(t) (4.4) 

with A0(t) ~ X(t). Note that __Afr O has been defined in (4.1) according (4.4). 
Combining (4.2), (4.3), and (4.4) it is easy to show that the (Ax) satisfies the 
following evolution equations: 

- + ( 4 . 5 )  

Then, in principle, Al(t) can be generated by solving the infinite set 

~0(t)  = A,( t )  (4.6) 

= - + x = 

In fact this is all but an easy job. However, if the random force of order p 
can be approximated by a Gaussian white noise ~(t) such that __F,(t) 
= 2 fl6(t), then the infinite set (4.6) is truncated at the order l, - 1 by 

~ , _ , ( t ) = - F  1(0)A~_2(t ) -  f lA ,_ , ( t )+_~( t )  (4.7) 

The resulting finite system can be seen as a vectorial strict Langevin 
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equation replacing (2.6) and can be easily implemented on a computer to 
generate Al(t). 

Coming back to (4.1) it is possible now to integrate them explicitly to 
get realizations of the stationary process (ri, ~, pi,~}, i = 1,n, a = 1, 3, gener- 
ating the phase space trajectory in the subspace of the n Brownian particles. 
This permits the evaluation of equilibrium or dynamical properties of these 
n particles in a bath. 

5. C O N C L U S I O N S  

Formulas (2.6), (3.2), and (3.3) constitute the main results of this 
paper. They give a derivation ~t la Mori and a physical interpretation of a 
nonlinear GLE for interacting particles in a bath. Equation (2.6), which is 
basic to all BD and GBD simulations, provides a quite natural separation 
of the mutual interactions of the Brownian particles from the heat bath 
solvent interactions which are treated stochastically. The second fluc- 
tuation-dissipation theorem relates the kernel of the convolution term in 
(2.6) to the solvent-solute force autocorrelation function [Eqs. (3.2) and 
(3.3)]. It gives in a clearcut way the physical meaning of the random force. 
For GBD purposes we have sketched in Section 4 a suitable procedure. The 
validity of it rests on two main approximations: (i) the random force is 
modeled by a stationary Gaussian process, and (ii) the continued fraction 
representation of the memory kernel __F can be truncated at some finite 
order. In general the kernel F is a matrix; if it is diagonal the stochastic part 
of the problem reduces to the scalar case, which has been described 
extensively elsewhere. (t~ In the general case Section 4 shows how to adapt 
the technique. 

The definition (2.5) of the dynamical variable that we have chosen to 
apply the Mori projection technique is such that the presence of an external 
stationary field is in the scope of our derivation. Therefore the same kind of 
arguments we have presented before apply to the case of a single particle 
subjected to a stationary external field, say, for example, an ion in a fluid in 
presence of an electrical and magnetic field. However, our argument fails if 
the external field is explicitly time dependent. In this case, the system is not 
in equilibrium and the Mori projection technique does not apply. Moreover 
there is in general no clear way to extend Mori's ideas: this is only possible 
in the very special case where the external force is an impulsive one, that is, 
where the time dependence is given through a 8 function type of behavior, 
~(t)~6(t). Here the physical meaning of the force is simply a suitable 
choice of the initial conditions and the GLE gives the relaxation of the 
variable X(t) toward equilibrium. Often (~7) a GLE has been written on 
intuitive grounds for general time-dependent forces in the validity region of 
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linear response theory (LRT). In this case the GLE gives simply a rephras- 
ing of LRT and no special meaning has to be attached to the corresponding 
GLE. From the formal point of view there is not much more to be added. 
However, from the physical point of view some comments are in order. 

In the framework of Mori the time evolution of the random force is far 
from simple. Indeed it contains all but the systematic force, i.e., the 
convolution term of the GLE, and it is quite improbable that R ( t )  can be 
reduced to a Gaussian process. On the other hand the aim of GBD both for 
technical and physical reasons consists just in the reduction of the random 
force to some kind of simple stochastic process, after extraction of all the 
relevant properties of the degrees of freedom to be disregarded (the thermal 
bath of above). Therefore some bridge has to be built to fill this gap. We 
believe that a solution to this problem could come from two main sources. 
The first one consists in replacing the bare forces of Eq. (2.6) with some 
"renormalized" ones representing an effective interaction a n d / o r  external 
field. The systematic derivation of such an effective potential is, to our 
knowledge, still missing. Moreover, as has been discussed at the end of 
Section 3, the physical meaning of the random force autocorrelation 
function is in this case far from clear. A proper derivation of the effective 
potential could be of great help in clarifying this last point. 

The second possibility to be considered consists in changing the 
projection technique so as to include in the systematic force all the 
properties of the bath relevant for the evolution of the Brownian subsystem 
under study. This could be obtained by applying the Deutch and Op- 
penheim (13) technique of hydrodynamic interactions. The main problem 
here is the introduction of memory effects in the corresponding strict 
Langevin equation. This generalization is still lacking. 
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